In determining automobile-mileage ratings, it was found that the mpg (X) for a certain model is normally distributed, with a mean of 33 mpg and a standard deviation of 1.7 mpg. Find the following:__________.
a. P(X<30)
b. P(28 c. P(X>35)
d. P(X>31)
e. the mileage rating that the upper 5% of cars achieve.

Respuesta :

Answer:

a) P(X < 30) = 0.0392.

b) P(28 < X < 32) = 0.2760

c) P(X > 35) = 0.1190

d) P(X > 31) = 0.8810

e) At least 35.7965 mpg

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 33, \sigma = 1.7[/tex]

a. P(X<30)

This is the pvalue of Z when X = 30. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{30 - 33}{1.7}[/tex]

[tex]Z = -1.76[/tex]

[tex]Z = -1.76[/tex] has a pvalue of 0.0392.

Then

P(X < 30) = 0.0392.

b) P(28 < X < 32)

This is the pvalue of Z when X = 32 subtracted by the pvalue of Z when X = 28. So

X = 32

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{32 - 33}{1.7}[/tex]

[tex]Z = -0.59[/tex]

[tex]Z = -0.59[/tex] has a pvalue of 0.2776.

X = 28

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{28 - 33}{1.7}[/tex]

[tex]Z = -2.94[/tex]

[tex]Z = -2.94[/tex] has a pvalue of 0.0016.

0.2776 - 0.0016 = 0.2760.

So

P(28 < X < 32) = 0.2760

c) P(X>35)

This is 1 subtracted by the pvalue of Z when X = 35. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{35 - 33}{1.7}[/tex]

[tex]Z = 1.18[/tex]

[tex]Z = 1.18[/tex] has a pvalue of 0.8810.

1 - 0.8810 = 0.1190

So

P(X > 35) = 0.1190

d. P(X>31)

This is 1 subtracted by the pvalue of Z when X = 31. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{31 - 33}{1.7}[/tex]

[tex]Z = -1.18[/tex]

[tex]Z = -1.18[/tex] has a pvalue of 0.1190.

1 - 0.1190 = 0.8810

So

P(X > 31) = 0.8810

e. the mileage rating that the upper 5% of cars achieve.

At least the 95th percentile.

The 95th percentile is X when Z has a pvalue of 0.95. So it is X when Z = 1.645. Then

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.645 = \frac{X - 33}{1.7}[/tex]

[tex]X - 33 = 1.645*1.7[/tex]

[tex]X = 35.7965[/tex]

At least 35.7965 mpg

The upper 5% of cars have a mileage rating of 35.805 mpg

What is z score?

Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:

z = (raw score - mean) / standard deviation

Given;  mean of 33 mpg and a standard deviation of 1.7

a) For < 30:

z = (30 - 33)/1.7 = -1.76

P(x < 30) = P(z < -1.76) = 1 - 0.8413 = 0.0392

b) For < 28:

z = (28 - 33)/1.7 = -2.94

P(x < 28) = P(z < -2.94) = 0.0016

c) For > 35:

z = (35 - 33)/1.7 = 1.18

P(x > 35) = P(z > 1.18) = 1 - P(z < 1.18) = 1 - 0.8810 = 0.119

d) For > 31:

z = (31 - 33)/1.7 = -1.18

P(x > 31) = P(z > -1.18) = 1 - P(z < -1.18) = 0.8810

e) The  upper 5% of cars achieve have a z score of 1.65, hence:

1.65 = (x - 33)/1.7

x = 35.805 mpg

The upper 5% of cars have a mileage rating of 35.805 mpg

Find out more on z score at: https://brainly.com/question/25638875