Which function is the inverse of f Superscript negative 1 Baseline (x) = negative one-fifth x minus four-fifths? f Superscript negative 1 Baseline (x) = negative one-fifth x + four-fifths

Respuesta :

Answer:

The inverse of the function is [tex]g (x)=-5x-4[/tex].

Step-by-step explanation:

The function provided is:

[tex]f^{-1}(x)=-\frac{1}{5}\ x-\frac{4}{5}[/tex]

Let us assume that:

[tex]y=f^{-1}(x)[/tex]

Then the equation will be:

[tex]y=\frac{-x-4}{5}[/tex]

To compute the inverse of the function substitute x as y and y as x.

[tex]x=\frac{-y-4}{5}[/tex]

Now solve for y as follows:

[tex]x=\frac{-y-4}{5}[/tex]

[tex]5x=-y-4[/tex]

[tex]y=-5x-4[/tex]

Thus, the inverse of the function is [tex]g (x)=-5x-4[/tex].

Answer:

The answer is "-5x-4"

Step-by-step explanation:

Given:

[tex]\bold{f^{-1} (x)=(-\frac{1x}{5}-\frac{4}{5})}[/tex]

solve the above equation:

[tex]\to f^{-1}(x)= \frac{-x-4}{5}\\\\\to f^{-1}(x)= -\frac{x+4}{5}\\[/tex]

Let

[tex]y= f^{-1} x= -(\frac{x+4}{5})\\\\[/tex]

inverse the above function:

[tex]\to x= -(\frac{y+4}{5})\\\\\to 5x= -(y+4)\\\\\to 5x= -y-4\\\\\to\boxed {y=-5x-4}\\\\[/tex]