Respuesta :
Answer:
Option(B) is the correct answer to the given question.
Step by Step Explanation
We know that
[tex]A\ =\ P \ *(\ 1+\ \frac{r}{n} \ ) ^{nt}[/tex]
Here A=amount
r=15.98%=0.1598
n=365
t=1
Putting these values into the equation
[tex]A\ =\ P \ *(\ 1+\ \frac{0.1598}{365} \ ) ^{365}[/tex]
[tex]A\ =\ P \ *(\ 1+\ 0.000437) ^\ { 365}[/tex]
[tex]A\ =\ P \ *(\ 1.000437 ) ^{365}[/tex]
[tex]A\ =1.17288 P[/tex]
Now we find the interest
I=[tex]1.17288P\ -P\\=\ 0.17288P\\\ ~ 0.1720P[/tex]
Therefore effective interest rate of the last year can be determined by
[tex]\frac{0.1720P}{P}[/tex]
=0.1720 *100
=17.20%