A particle oscillates between the points x=40 mm and x=160 mm with
an acceleration a =
k(100 - x), where a and x are expressed in mm/s2 and
respectively, and k is a constant. The velocity of the particle is 18 mm/s when x = 100 mm
and is zero at both x = 40 mm and x = 160 mm. Determine (a) the value of k,
(b) the velocity when x = 120 mm.​

Respuesta :

Answer:

(a) k = 0.09 s⁻¹

(b) The velocity= ± 16.97 mm/s

Explanation:

(a) Given that the acceleration = a = k(100 - x)

Therefore;

[tex]a = \dfrac{dv}{dt} = \dfrac{dv}{dx} \times \dfrac{dx}{dt} = \dfrac{dv}{dx} \times v = k(100 - x)[/tex]

When x = 40 mm, v = 0 mm/s hence;

[tex]\int\limits^v_0 {v } \, dv = \int\limits^x_{40} {k(100 - x)} \, dx[/tex]

[tex]\dfrac{1}{2} v^2 = k \cdot \left [100\cdot x-\frac{1}{2}\cdot x^{2} \right ]_{x}^{40}[/tex]

[tex]\dfrac{1}{2} v^2 = -\dfrac{ k\cdot \left (x^{2}-200\cdot x+6400 \right ) }{2}[/tex]

At x = 100 mm, v = 18 mm/s hence we have;

[tex]\dfrac{1}{2} 18^2 = -\dfrac{ k\cdot \left (100^{2}-200\times 100+6400 \right ) }{2} = 1800\cdot k[/tex]

[tex]\dfrac{1}{2} 18^2 =162 = 1800\cdot k[/tex]

k = 162/1800 = 9/100 = 0.09 s⁻¹

(b) When x = 120 mm, we have

[tex]\dfrac{1}{2} v^2 = -\dfrac{ 0.09\times \left (120^{2}-200\times 120+6400 \right ) }{2} = 144[/tex]

Therefore;

v² = 2 × 144 = 288

The velocity, v = √288 = ±12·√2 = ± 16.97 mm/s.