Respuesta :
Answer:
[tex]\hat p \pm Z*\sqrt{\frac{\hat p\times(1-\hat p)}{n} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.5546\times(1-0.5546)}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.5546\times(0.4454)}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.2470}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{0.00053934}[/tex]
[tex]=(0.5091,0.6001)[/tex]
Lower limit for confidence interval=0.5091
Upper limit for confidence interval=0.6001
Step-by-step explanation:
We have given,
x=254
n=458
Estimate for sample proportion= [tex]\bar p = 0.5546[/tex]
Level of significance is =1-0.95=0.05
Z critical value(using Z table)=1.96
Confidence interval formula is
[tex]\hat p \pm Z*\sqrt{\frac{\hat p\times(1-\hat p)}{n} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.5546\times(1-0.5546)}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.5546\times(0.4454)}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{\frac{0.2470}{458} }[/tex]
[tex]=0.5546\pm1.96*\sqrt{0.00053934}[/tex]
[tex]=(0.5091,0.6001)[/tex]
Lower limit for confidence interval=0.5091
Upper limit for confidence interval=0.6001