Answer:
The correct answer will be "0.400 gm".
Step-by-step explanation:
The give values are:
Needs of hospital, N = 0.100 gm
Time, t = 10 days
Minimum amount of Xenon, N₀ = ?
As we know,
⇒ [tex]N(t)=N_{0} \ e^{-\lambda t}[/tex]
∴ Decay constant, λ = [tex]\frac{ln2}{t_{1/2}}[/tex]
λ = [tex]\frac{ln2}{5}[/tex]
On putting values, we get
⇒ [tex]0.100=N_{0} \ e^{-\frac{ln2}{5}}\times 10[/tex]
⇒ [tex]0.1=N_{0} \ e^{-2ln2} = N_{0} \ e^{-ln4}[/tex]
⇒ [tex]0.1=N_{0} \ e^{ln\frac{1}{4}}[/tex]
⇒ [tex]0.1=\frac{N_{0}}{4}[/tex]
⇒ [tex]N_{0}=0.1\times 4[/tex]
⇒ [tex]MX_{e}=0.400 \ gm[/tex]