Which of the following is true regarding the solution to the logarithmic equation below? log Subscript 2 Baseline (x + 11) = 4. x + 11 = 2 Superscript 4. x + 11 = 16. x = 5. x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 2 x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 4 x = 5 is a true solution because log Subscript 2 Baseline (16) = 4 x = 5 is a true solution because log Subscript 4 Baseline (16) = 2

Respuesta :

Answer:

Option C.

Step-by-step explanation:

The given logarithmic equation is

[tex]\log_2(x+11)=4[/tex]

It can be written as

[tex](x+11)=2^4[/tex]     [tex][\because log_ax=y\Leftrightarrow x=a^y][/tex]

[tex]x+11=16[/tex]

[tex]x=5[/tex]

Now, to check whether [tex]x=5[/tex] is a true solution or not. Substitute [tex]x=5[/tex] in the LHS of given equation.

[tex]LHS=\log_2(5+11)[/tex]

[tex]LHS=\log_2(16)[/tex]

[tex]LHS=\log_22^4[/tex]

[tex]LHS=4[/tex]     [tex][\because log_aa^x=x][/tex]

[tex]LHS=RHS[/tex]

Hence, [tex]x=5[/tex] is a true solution because [tex]\log_2(16)=4[/tex].

Therefore, the correct option is C.

Answer:

C on edge2021

Step-by-step explanation: