Answer: 125 g
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} B_2H_6=\frac{36.1g}{17}=1.30moles[/tex]
The balanced reaction is:
[tex]B_2H_6+3O_2\rightarrow 2HBO_2+2H_2O[/tex]
According to stoichiometry :
1 mole of [tex]B_2H_6[/tex] require = 3 moles of [tex]O_2[/tex]
Thus 1.30 moles of [tex]B_2H_6[/tex] will require=[tex]\frac{3}{1}\times 1.30=3.90moles[/tex] of [tex]O_2[/tex]
Mass of [tex]O_2=moles\times {\text {Molar mass}}=3.90moles\times 32g/mol=125g[/tex]
Thus 125 g of [tex]O_2[/tex] will be needed to burn 36.1 g of [tex]B_2H_6[/tex]