1. Use limit comparison test to determine whether the series converges or diverges:

Σ[infinity]_n=1 n^2 + 1 / 2n^3 - 1

2. Use limit comparison test to determine whether the series converges or diverges:

Σ[infinity]_n = 1 n / √n^5 + 5

3. Use direct comparison test to determine whether the series converges or diverges:

Σ[infinity]_n = 1 4 + 3^n / 2^n

Respuesta :

Answer:

1. Diverges

2. Converges

3. Diverges

Step-by-step explanation:

Solution:-

Limit comparison test:

- Given, ∑[tex]a_n[/tex] and suppose ∑[tex]b_n[/tex] such that both series are positive for all values of ( n ). Then the following three conditions are applicable for the limit:

                          Lim ( n-> ∞ )   [tex][ \frac{a_n}{b_n} ][/tex]  = c

Where,

1) If c is finite: 0 < c < 1, then both series ∑[tex]a_n[/tex] and ∑[tex]b_n[/tex] either converges or diverges.

2) If c = 0, then ∑[tex]a_n[/tex] converges only if ∑[tex]b_n[/tex] converges.

3) If c = ∞ or undefined, then ∑[tex]a_n[/tex] diverges only if ∑[tex]b_n[/tex] diverges.

a) The given series ∑[tex]a_n[/tex] is:

                   (n = 1) ∑^∞  [tex][ \frac{n^2+1}{2n^3-1} ][/tex]

- We will make an educated guess on the comparative series  ∑[tex]b_n[/tex] by the following procedure.

                  (n = 1) ∑^∞   [tex][ \frac{n^2( 1 + \frac{1}{n^2} )}{n^3 ( 2 - \frac{1}{n^2} ) } ] = [ \frac{( 1 + \frac{1}{n^2} )}{n( 2 - \frac{1}{n^2} ) } ][/tex]

- Apply the limit ( n - > ∞ ):

                 (n = 1) ∑^∞  [tex][ \frac{1}{2n}][/tex]    .... The comparative series ( ∑[tex]b_n[/tex] )

- Both series  ∑[tex]a_n[/tex] and ∑[tex]b_n[/tex] are positive series. You can check by plugging various real number for ( n ) in both series.

- Compute the limit:

                 Lim ( n-> ∞ )  [tex][ \frac{n^2 + 1}{2n^3 - 1} * 2n ] = [ \frac{2n^3 + 2n}{2n^3 - 1} ][/tex]

                 Lim ( n-> ∞ )    [tex][ \frac{2n^3 ( 1 + \frac{1}{n^2} ) }{2n^3 ( 1 - \frac{1}{2n^3} ) } ] = [ \frac{ 1 + \frac{1}{n^2} }{ 1 - \frac{1}{2n^3} } ][/tex]

- Apply the limit ( n - > ∞ ):

                Lim ( n-> ∞ )  [tex][ \frac{a_n}{b_n} ][/tex]  = [tex][ \frac{1 + 0}{1 + 0} ][/tex] = 1   ... Finite

- So from first condition both series either converge or diverge.

- We check for ∑[tex]b_n[/tex] convergence or divergence.

- The ∑[tex]b_n[/tex] = ( 1 / 2n ) resembles harmonic series ∑ ( 1 / n ) which diverges by p-series test ∑ ( [tex]\frac{1}{n^p}[/tex] ) where p = 1 ≤ 1. Hence, ∑

- In combination of limit test and the divergence of ∑[tex]b_n[/tex], the series ∑[tex]a_n[/tex] given also diverges.

Answer: Diverges    

b)          

The given series ∑[tex]a_n[/tex] is:

                   (n = 1) ∑^∞  [tex][ \frac{n}{n^\frac{5}{2} +5} ][/tex]

- We will make an educated guess on the comparative series  ∑[tex]b_n[/tex] by the following procedure.

                  (n = 1) ∑^∞   [tex][ \frac{n( 1 )}{n ( n^\frac{3}{2} + \frac{5}{n} ) } ] = [\frac{1}{( n^\frac{3}{2} + \frac{5}{n} )} ][/tex]

- Apply the limit ( n - > ∞ ) in the denominator for  ( 5 / n ), only the dominant term n^(3/2) is left:

                  (n = 1) ∑^∞    [tex][ \frac{1}{n^\frac{3}{2} } ][/tex] .... The comparative series ( ∑[tex]b_n[/tex] )

- Both series  ∑[tex]a_n[/tex] and ∑[tex]b_n[/tex] are positive series. You can check by plugging various real number for ( n ) in both series.

- Compute the limit:

                 Lim ( n-> ∞ )   [tex][ \frac{n}{n^\frac{5}{2} +5} * n^\frac{3}{2} ] = [ \frac{n^\frac{5}{2}}{n^\frac{5}{2} +5} ][/tex]

                 Lim ( n-> ∞ )    [tex][ \frac{n^\frac{5}{2}}{n^\frac{5}{2} ( 1 + \frac{5}{n^\frac{5}{2}}) } ] = [ \frac{1}{1 + \frac{5}{n^\frac{5}{2}} } ][/tex]

- Apply the limit ( n - > ∞ ):

                Lim ( n-> ∞ )  [tex][ \frac{a_n}{b_n} ][/tex]  = [tex][\frac{1}{1 + 0}][/tex] = 1   ... Finite

- So from first condition both series either converge or diverge.

- We check for ∑[tex]b_n[/tex] convergence or divergence.

- The ∑[tex]b_n[/tex] = ( [tex][ \frac{1}{n^\frac{3}{2} } ][/tex] ) converges by p-series test ∑ ( [tex]\frac{1}{n^p}[/tex] ) where p = 3/2 > 1. Hence, ∑

- In combination of limit test and the divergence of ∑[tex]b_n[/tex], the series ∑[tex]a_n[/tex] given also converges.

Answer: converges

Comparison Test:-  

- Given, ∑[tex]a_n[/tex] and suppose ∑[tex]b_n[/tex] such that both series are positive for all values of ( n ).

-Then the following conditions are applied:

1 ) If ( [tex]a_n[/tex] - [tex]b_n[/tex] ) < 0 , then ∑[tex]a_n[/tex] diverges only if ∑[tex]b_n[/tex] diverges

2 ) If ( [tex]a_n[/tex] - [tex]b_n[/tex] ) ≤ 0 , then ∑[tex]a_n[/tex] converges only if ∑[tex]b_n[/tex] converges

c) The given series ∑[tex]a_n[/tex] is:

                   (n = 1) ∑^∞ [tex][ \frac{4 + 3^2}{2^n} ][/tex]

- We will make an educated guess on the comparative series  ∑[tex]b_n[/tex] by the following procedure.

                  (n = 1) ∑^∞ [tex][ \frac{3^n ( \frac{4}{3^n} + 1 )}{2^n} ][/tex]

- Apply the limit ( n - > ∞ ) in the numerator for  ( 4 / 3^n ), only the dominant terms ( 3^n ) and ( 2^n ) are left:  

                 (n = 1) ∑^∞ [tex][ \frac{3^n}{2^n} ][/tex]   ... The comparative series ( ∑[tex]b_n[/tex] )

- Compute the difference between sequences ( [tex]a_n[/tex] - [tex]b_n[/tex] ):

                 [tex]a_n - b_n = \frac{4 + 3^n}{2^n} - [ \frac{3^n}{2^n} ] \\\\a_n - b_n = \frac{4 }{2^n} \geq 0[/tex], for all values of ( n )

- Check for divergence of the comparative series ( ∑[tex]b_n[/tex] ), using divergence test:

               ∑[tex]b_n[/tex] = (n = 1) ∑^∞ [tex][ \frac{3^n}{2^n} ][/tex]  diverges

- The first condition is applied when  ( [tex]a_n[/tex] - [tex]b_n[/tex] ) ≥ 0, then ∑diverges only if ∑[tex]b_n[/tex] diverges.

Answer: Diverges