"The chance that a person selected at random has blue eyes is 16%. Two people are chosen at random (and are independent of each other). Find the probability at least one of them does not have blue eyes. Round your answer to 4 decimal places."

Respuesta :

Answer:

[tex]P(X=0)=(2C0)(0.84)^0 (1-0.84)^{2-0}=0.0256[/tex]

And replacing we got:

[tex] P(X \geq 1)=1 -P(X<1) = 1-P(X=0)=1-0.0256=0.9744[/tex]

Step-by-step explanation:

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=2, p=1-0.16=0.84)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

And we can find this probability:

[tex] P(X \geq 1)[/tex]

And we can solve this probability like this:

[tex] P(X \geq 1)=1 -P(X<1) = 1-P(X=0)[/tex]

And if we use the probability mass function we got:

[tex]P(X=0)=(2C0)(0.84)^0 (1-0.84)^{2-0}=0.0256[/tex]

And replacing we got:

[tex] P(X \geq 1)=1 -P(X<1) = 1-P(X=0)=1-0.0256=0.9744[/tex]