Find the point of diminishing returns (x comma y )for the function​ R(x), where​ R(x) represents revenue​ (in thousands of​ dollars) and x represents the amount spent on advertising​ (in thousands of​ dollars).

Respuesta :

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The point of diminishing returns (x , y ) is  (11, 21462)

Step-by-step explanation:

From the question we are told that

     The function is  [tex]R(x) = 10,000 -x^3 - 33x^2 + 800x , \ \ 0 \le x \le 20[/tex]

Here R(x)  represents revenue (in thousands of​ dollars) and  x  represents the amount spent on advertising​ (in thousands of​ dollars).

           Now  differentiating  R(x) we have  

               [tex]R'(x) = -3x^2 +66x + 800[/tex]

Finding the second derivative of R(x)

              [tex]R''(x) = -6x +66[/tex]

at  inflection point    [tex]R''(x) = 0[/tex]

    So      [tex]-6x +66 = 0[/tex]

=>           [tex]x= 11[/tex]

    substituting value of x into R(x)

     [tex]R(x) = 10,000 -(11)^3 - 33(11)^2 + 800(11) ,[/tex]

      [tex]R(x) = 21462[/tex]

Now the point of diminishing returns (x , y ) i.e (x , R(x) ) is

     (11, 21462)

Ver imagen okpalawalter8