Respuesta :

Answer:   -9  ≤ f(6) - f(3)  ≤ 15

Step-by-step explanation:

In order to use the Mean Value Theorem, it must be continuous and differentiable. Both of these conditions are satisfied so we can continue.  

Find f(6) - f(3) using the following formula:

[tex]f'(c)=\dfrac{f(b)-f(a)}{b-a}[/tex]

Consider:    a = 3, b = 6

[tex]\text{Then}\ f'(c)=\dfrac{f(6)-f(3)}{6-3}\\\\\\\rightarrow \quad 3f'(c)=f(6) - f(3)[/tex]          

Given: -3 ≤  f'(x)  ≤ 5

          -9  ≤ 3f'(c) ≤ 15    Multiplied each side by 3

→   -9  ≤ f(6) - f(3)  ≤ 15  Substituted 3f'(c) with f(6) - f(3)