Answer:
[tex]3\sqrt{5}.[/tex]
Step-by-step explanation:
It is given that the initial point of [tex]\vec{a}[/tex] is (-2,4) and terminal point is (-5,-2). So, [tex]\vec{a}[/tex] is defined as
[tex]\vec{a}=(-5-(-2))\hat{i}+(-2-4)\hat{j}[/tex]
[tex]\vec{a}=(-5+2)\hat{i}+(-2-4)\hat{j}[/tex]
[tex]\vec{a}=-3\hat{i}-6\hat{j}[/tex]
The magnitude of [tex]\vec{v}=a\hat{i}+b\hat{j}[/tex] is
[tex]|\vec{v}|=\sqrt{a^2+b^2}[/tex]
The magnitude of [tex]\vec{a}[/tex] is
[tex]|\vec{a}|=\sqrt{(-3)^2+(-6)^2}[/tex]
[tex]|\vec{a}|=\sqrt{9+36}[/tex]
[tex]|\vec{a}|=\sqrt{45}[/tex]
[tex]|\vec{a}|=3\sqrt{5}[/tex]
Modulus of magnitude is
[tex]||\vec{a}||=|3\sqrt{5}|=3\sqrt{5}[/tex]
So, the magnitude of [tex]\vec{a}[/tex] is [tex]3\sqrt{5}.[/tex]