Respuesta :

Answer:

Option (D). 110°

Step-by-step explanation:

Since EB and AD are diameter,

[tex]m(\widehat{ECB})[/tex] = [tex]m(\widehat{ACD})[/tex] = 180°

[tex]m(\widehat{ECB})=m(\widehat{EDC})+m(\widehat{BC})[/tex] = 180° -------(1)

And [tex]m(\widehat{ACD})=m(\widehat{AB})+m(\widehat{BCD})[/tex]

180° = 40° + [tex]m(\widehat{BCD})[/tex]

[tex]m(\widehat{BCD})[/tex] = 140°

Since, [tex]m(\widehat{BCD})=m(\widehat{BC})+m(\widehat{CD})[/tex]

[tex]2m(\widehat{BC})[/tex] = 140° [Given [tex]m(\widehat{BC})=m(\widehat{CD})[/tex]]

[tex]m(\widehat{BC})[/tex] = 70°

From equation (1),

[tex]m(\widehat{EDC}})[/tex] = 180° - [tex]m(\widehat{BC})[/tex]

[tex]m(\widehat{EDC}})[/tex] = 180°- 70°

Therefore, measure of arc(EDC) = 110°

Option (D) will be the answer.