Answer:
Step-by-step explanation:
A)
the sum of any two sides of a right triangle more than any other side
14+15>29, x is less than 29
14+x>15
x>1
15+x>14
x>-1
1<x<29
lets use Pythagorean Theorem
14^(2)+15^(2)=c^2
196+225=c^2
421=c^2
plusminus sqrt(421)=c
distance can't be negative, so:
c=sqrt(421)
c=20.5182845287
sqrt(421) is the largest possible right triangle side
1<x[tex]\leq[/tex]sqrt(421)
B) as we can see from above, the largest possible length of the third side is 14/sqrt(421) or about 20.5182845287ft
C)sqrt(421) by 14 by 15
tan(x1)=15/14
x1=tan^-1(15/14)
x1=47 degrees
tan(x2)=14/15
x2=tan^-1(14/15)
x2=43 degrees