Respuesta :

Answer:

[tex]\frac{x+3}{x}[/tex]

Step-by-step explanation:

Given

[tex]\frac{x^2-9}{x^2-3x}[/tex] factorise numerator and denominator

x² - 9 = (x - 3)(x + 3) ← difference of squares

x² - 3x = x(x - 3) , thus

= [tex]\frac{(x-3)(x+3)}{x(x-3)}[/tex] ← cancel (x - 3) on numerator/ denominator, leaving

= [tex]\frac{x+3}{x}[/tex]