What are the zeros of the function f(x) = x2 + 5x + 5 written in simplest radical form?

A. x=5-+10*square root* 5/2

B. x=-5-+10*square root*5/2

C. x=-5-+*square root*5/2

D. x=5-+*square root*5/2

Respuesta :

Step-by-step explanation:

The function is as follows :

[tex]f(x) = x^2 + 5x + 5[/tex]

We need to find the zeroes of the function in the simplest radical form.The zero of the above function is given by :

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

Here,

b = 5

a = 1

c = 5

So,

[tex]x=\dfrac{-5\pm \sqrt{5^2-4\times 1\times 5} }{2(1)}\\\\x=\dfrac{-5\pm \sqrt{25-20} }{2(1)}\\\\x=\dfrac{-5\pm \sqrt{5} }{2}[/tex]

Hence, the correct option is (c).