I NEED HELP PLEASE, THANKS!

Ammonia (NH3) is an example of a Brønsted-Lowry Base.
-Define the Brønsted-Lowry acid-base theory.
-What is the pH of an ammonia solution that has a concentration of 0.335 M? The Kb of ammonia is 1.8 × 10^–5.

Respuesta :

znk

Answer:

Here's what I get.

Explanation:

1. Brønsted-Lowry theory

An acid is a substance that can donate a proton to another substance.

A  base is a substance that can accept a proton from another substance.

2. pH of ammonia

The chemical equation is

[tex]\rm NH$_{3}$ + \text{H}$_{2}$O \, \rightleftharpoons \,$ NH$_{4}^{+}$ + \text{OH}$^{-}$[/tex]

For simplicity, let's re-write this as

[tex]\rm B + H$_{2}$O \, \rightleftharpoons\,$ BH$^{+}$ + OH$^{-}$[/tex]

(a) Set up an ICE table.

                     B + H₂O ⇌ BH⁺ + OH⁻

I/mol·L⁻¹:     0.335             0        0

C/mol·L⁻¹:       -x                +x       +x

E/mol·L⁻¹:  0.335 + x          x         x

[tex]\rm K_{\text{b}} = \dfrac{\text{[BH}^{+}]\text{[OH}^{-}]}{\text{[B]}} = 1.8 \times 10^{-5}\\\\\dfrac{x^{2}}{0.335 - x} = 1.8 \times 10^{-5}[/tex]

Check for negligibility:

[tex]\dfrac{0.335}{1.8 \times 10^{-5}} = 28 000 > 400\\\\x \ll 0.335[/tex]

(b) Solve for [OH⁻]

[tex]\dfrac{x^{2}}{0.335} = 1.8 \times 10^{-5}\\\\x^{2} = 0.335 \times 1.8 \times 10^{-5}\\x^{2} = 6.03 \times 10^{-6}\\x = \sqrt{6.03 \times 10^{-6}}\\x = \text{[OH]}^{-} = \mathbf{2.46 \times 10^{-3}} \textbf{ mol/L}[/tex]

(c) Calculate the pOH

[tex]\text{pOH} = -\log \text{[OH}^{-}] = -\log(2.46 \times 10^{-3}) = 2.61[/tex]

(d) Calculate the pH

pH = 14.00 - pOH = 14.00 - 2.61 = 11.39