A rod extending between x = 0 and x = 13.0 cm has uniform cross-sectional area A = 8.00 cm2. Its density increases steadily between its ends from 2.50 g/cm3 to 19.0 g/cm3. (a) Identify the constants B and C required in the expression rho = B + Cx to describe the variable density.

Respuesta :

Answer:

The mass is  [tex]m = 3.45408 kg[/tex]

Explanation:

From the question we are told that

    The extension  of the rod is [tex]from , \ x_1 = 0 \to x_2 = 13.0[/tex]

     The area is  [tex]A = 8.0 cm^2[/tex]

      The density increase as follows [tex]from \ \rho_1 =2.5 g/cm^2 \to \rho_2= 19.0 g/cm^3[/tex]

    The equation  [tex]\rho = B + Cx[/tex]

at  [tex]x_1= 0[/tex]  [tex]\rho_1 =2.5 g/cm^2[/tex]

So

      [tex]2.5 = B + 0[/tex]

=>  [tex]B =2.5[/tex]

    So at [tex]x_2 = 13.0[/tex] ,  [tex]\rho_2= 19.0 g/cm^3[/tex]

So

            [tex]19.0 = 2.5 + C(13)[/tex]

       =>   [tex]C = 1.27[/tex]

Now  

       [tex]m = 8 \int\limits^{13}_{0} {2.5 + 1.27x} \, dx[/tex]

      [tex]m = 8 [{2.5 +\frac{ 1.27x^2}{2} } ]\left | 13} \atop {0}} \right.[/tex]

      [tex]m = 8 [{2.5 +\frac{ 1.27(13)^2}{2} } ][/tex]

      [tex]m = 3454.08 g[/tex]

        [tex]m = 3.45408 kg[/tex]