Answer:
The Estimated standard error = 0.8010
Step-by-step explanation:
Step(I):-
Given first sample size n₁ = 10
Given second sample size n₂ = 15
Mean of the first sample x₁⁻ = 10
Mean of the second sample x₂⁻ = 15
The standard deviation of the first sample 'S₁'= 1.5
The standard deviation of the second sample 'S₂'= 2.5
step(ii):-
The standard error of two groups is determined by
[tex]S.E( X^{-} _{1} - X^{-} _{2} ) = \sqrt{\frac{S^{2} _{1} }{n_{1} } +\frac{S^{2} _{2} }{n_{2} } }[/tex]
[tex]S.E( X^{-} _{1} - X^{-} _{2} ) = \sqrt{\frac{(1.5)^{2} }{10} +\frac{(2.5)^{2} }{15} }[/tex]
[tex]S.E( X^{-} _{1} - X^{-} _{2} ) = \sqrt{0.64166} = 0.8010[/tex]
Final answer:-
The Estimated standard error = 0.8010