Answer:
60%
Step-by-step explanation:
We have that there are 6 75-W bulbs, that is to say these are the favorable cases. The total cases would be the sum of all the bulbs that would be:
4 + 5 + 6 = 15
Therefore the probability of at least 1 75-W bulbs is:
6/15 = 0.4
Now we must find the probability of at least 2 75-W bulbs, which is like this:
P (examine at least two 75-W bulbs) = 1 - P (examine at most one 75-W bulbs)
Replacing:
P (examine at least two 75-W bulbs) = 1 - 0.4 = 0.6
It means that the probability of least two 75-W bulbs is 60%