Which expression is equivalent to StartFraction (3 m Superscript negative 1 Baseline n squared) Superscript negative 4 Baseline Over (2 m Superscript negative 2 Baseline n) cubed EndFraction?

Respuesta :

Answer:

[tex]3m^{10}n^{-11}[/tex]

Step-by-step explanation:

Given the expression [tex]\frac{(3m^{-1}n^{2})^{-4} }{(2m^{-2}n)^{3} }[/tex], we will use laws of indices to get the equivalent expression as shown below;

According to one of the law of indices,

[tex]\frac{a^{m} }{a^{n} } = a^{m-n} \ and\ (a^{m})^{n} = a^{mn}[/tex]

[tex]\frac{(3m^{-1}n^{2})^{-4} }{(2m^{-2}n)^{3} }\\= \frac{3m^{4}n^{-8} }{2m^{-6}n^{3} }\\= 3m^{(4-(-6))} * n^{-8-3}\\ = 3m^{10}n^{-11}[/tex]

This gives the required expression