Identify the functions that are continuous on the set of real numbers and arrange them in ascending order of their limits as x tends to 5. Please look at the attached image.

Identify the functions that are continuous on the set of real numbers and arrange them in ascending order of their limits as x tends to 5 Please look at the att class=

Respuesta :

Answer:

g(x)<j(x)<k(x)<f(x)<m(x)<h(x)

Step-by-step explanation:

1.[tex]f(x)=\frac{x^2+x-20}{x^2+4}[/tex]

The denominator of f is defined for all real values of x

Therefore, the function is continuous on the set of real numbers

[tex]\lim_{x\rightarrow 5}\frac{x^2+x-20}{x^2+4}=\frac{25+5-20}{25+4}=\frac{10}{29}=0.345[/tex]

3.[tex]h(x)=\frac{3x-5}{x^2-5x+7}[/tex]

[tex]x^2-5x+7=0[/tex]

It cannot be factorize .

Therefore, it has no real values for which it is not defined .

Hence, function h is defined for all real values.

[tex]\lim_{x\rightarrow 5}\frac{3x-5}{x^2-5x+7}=\frac{15-5}{25-25+7}=\frac{10}{7}=1.43[/tex]

2.[tex]g(x)=\frac{x-17}{x^2+75}[/tex]

The denominator of g is defined for all real values of x.

Therefore, the function g is continuous on the set of real numbers

[tex]\lim_{x\rightarrow 5}\frac{x-17}{x^2+75}=\frac{5-17}{25+75}=\frac{-12}{100}=-0.12[/tex]

4.[tex]i(x)=\frac{x^2-9}{x-9}[/tex]

x-9=0

x=9

The function i is not defined for x=9

Therefore, the function i is  not continuous on the set of real numbers.

5.[tex]j(x)=\frac{4x^2-7x-65}{x^2+10}[/tex]

The denominator of j is defined for all real values of x.

Therefore, the function j is continuous on the set of real numbers.

[tex]\lim_{x\rightarrow 5}\frac{4x^2-7x-65}{x^2+10}=\frac{100-35-65}{25+10}=0[/tex]

6.[tex]k(x)=\frac{x+1}{x^2+x+29}[/tex]

[tex]x^2+x+29=0[/tex]

It cannot be factorize .

Therefore, it has no real values for which it is not defined .

Hence, function k is defined for all real values.

[tex]\lim_{x\rightarrow 5}\frac{x+1}{x^2+x+29}=\frac{5+1}{25+5+29}=\frac{6}{59}=0.102[/tex]

7.[tex]l(x)=\frac{5x-1}{x^2-9x+8}[/tex]

[tex]x^2-9x+8=0[/tex]

[tex]x^2-8x-x+8=0[/tex]

[tex]x(x-8)-1(x-8)=0[/tex]

[tex](x-8)(x-1)=0[/tex]

[tex]x=8,1[/tex]

The function is not defined for x=8 and x=1

Hence, function l is not  defined for all real values.

8.[tex]m(x)=\frac{x^2+5x-24}{x^2+11}[/tex]

The denominator of m is defined for all real values of x.

Therefore, the function m is continuous on the set of real numbers.

[tex]\lim_{x\rightarrow 5}\frac{x^2+5x-24}{x^2+11}=\frac{25+25-24}{25+11}=\frac{26}{36}=\frac{13}{18}=0.722[/tex]

g(x)<j(x)<k(x)<f(x)<m(x)<h(x)

Answer:

g, j, k, f, m, h

Step-by-step explanation: