Respuesta :

Answer:

[tex] V_x = -\frac{50}{2*(-1)} =25[/tex]

And for the coordinate on y we can use the function like this:

[tex] V_y = -(25)^2 +50*25 -456 =169[/tex]

Then the vertex would be [tex] V= (25,169)[/tex]

Step-by-step explanation:

For this problem we have the following function given:

[tex] f(x) = -x^2 +50x -456[/tex]

That represent a quadratic function and the general form is given by:

[tex] f(x)= ax^2 +bx +c[/tex]

For this problem a =-1 , b= 50 , c=-456 and we can find the corrdinate of the vertex in x with this formula:

[tex] V_x =-\frac{b}{2a}[/tex]

And replacing we got:

[tex] V_x = -\frac{50}{2*(-1)} =25[/tex]

And for the coordinate on y we can use the function like this:

[tex] V_y = -(25)^2 +50*25 -456 =169[/tex]

Then the vertex would be [tex] V= (25,169)[/tex]