Answer:
[tex] V_x = -\frac{50}{2*(-1)} =25[/tex]
And for the coordinate on y we can use the function like this:
[tex] V_y = -(25)^2 +50*25 -456 =169[/tex]
Then the vertex would be [tex] V= (25,169)[/tex]
Step-by-step explanation:
For this problem we have the following function given:
[tex] f(x) = -x^2 +50x -456[/tex]
That represent a quadratic function and the general form is given by:
[tex] f(x)= ax^2 +bx +c[/tex]
For this problem a =-1 , b= 50 , c=-456 and we can find the corrdinate of the vertex in x with this formula:
[tex] V_x =-\frac{b}{2a}[/tex]
And replacing we got:
[tex] V_x = -\frac{50}{2*(-1)} =25[/tex]
And for the coordinate on y we can use the function like this:
[tex] V_y = -(25)^2 +50*25 -456 =169[/tex]
Then the vertex would be [tex] V= (25,169)[/tex]