Respuesta :
Answer:
Option D.
Step-by-step explanation:
The given equation is
[tex]10b=5(\sqrt{c}+2)[/tex]
We need to find an equation which is equivalent to the given equation.
Using distributive property, we get
[tex]10b=5(\sqrt{c})+5(2)[/tex]
[tex]10b=5\sqrt{c}+10[/tex]
Subtract both sides by 10.
[tex]10b-10=5\sqrt{c}[/tex]
Divide both sides by 5.
[tex]\dfrac{10b-10}{5}=\sqrt{c}[/tex]
Taking square on both sides.
[tex]\left(\dfrac{10b-10}{5}\right)=(\sqrt{c})^2[/tex]
[tex]\dfrac{(10b-10)^2}{25}=c[/tex]
[tex]c=\dfrac{(10b-10)^2}{25}[/tex]
This equation is equivalent to the given equation.
Therefore, the correct option is D.