Respuesta :

Answer:

[tex]f(x) = 3x^2[/tex]

[tex]g(x) = x + 2[/tex]

Step-by-step explanation:

Given

[tex]h(x) = 3(x+2)^2[/tex]

[tex]h(x) = (fog)(x)[/tex]

Required

Find  f(x) and g(x)

[tex]h(x) = (fog)(x)[/tex]

Rewrite h(x)

[tex]h(x) = f(g(x))[/tex]

If  [tex]h(x) = 3(x+2)^2[/tex]

then

[tex]f(g(x)) = 3(x+2)^2[/tex]

This implies that; the expression in the brackets are equal;

In other words; function g(x) on the left hand side is equal to expression x + 2 on the right hand side

So;

[tex]g(x) = x + 2[/tex]

To find f(x), substitute g(x) with x

[tex]f(x) = 3(x)^2[/tex]

[tex]f(x) = 3x^2[/tex]

Final solutions are

[tex]f(x) = 3x^2[/tex]

[tex]g(x) = x + 2[/tex]