Respuesta :

Answer:

[tex]3[/tex]

Step-by-step explanation:

[tex]\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6...}}}}}}}}}[/tex]

[tex]= 2.999999999999999999999999999...[/tex]

[tex]= 3[/tex]

Answer:

3

Step-by-step explanation:

hello,

let's define the following sequence

[tex]a_0=\sqrt{6}\\a_{n+1}=\sqrt{6+a_n}[/tex]

the number we are looking for is the limit of the sequence

we can prove that the sequence is increasing and

[tex]a_n <= 3[/tex] by induction

(by noticing that if [tex]a_n <=3[/tex] then  [tex]a_{n+1}=\sqrt{6+a_n} <=\sqrt{6+3} =3[/tex] )

so the limit of the sequence exists, let's note it l we can write from

[tex]a_{n+1}=\sqrt{6+a_n}[/tex]

that

[tex]l=\sqrt{6+l}[/tex]

so

[tex]l^2=6+l <=> l^2-l-6=0 <=> l^2-3l+2l-6=0\\<=> l(l-3)+2(l-3)=0<=>(l+2)(l-3)=0\\\\<=>l=-2 \ \ or \ \ l = 3[/tex]

as

[tex]a_n >= 0[/tex] it comes l = 3

hope this helps