Answer:
a) Energy stored in the capacitor, [tex]E = 1.0125 *10^{-3} J[/tex]
b) Q = 45 µC
c) C' = 1.5 μF
d) [tex]E = 6.75 *10^{-4} J[/tex]
Explanation:
Capacitance, C = 1 µF
Charge on the plates, Q = 45 µC
a) Energy stored in the capacitor is given by the formula:
[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{2}\\\\E = 1012.5 *10^{-6}\\\\E = 1.0125 *10^{-3} J[/tex]
b) The charge on the plates of the capacitor will not change
It will still remains, Q = 45 µC
c) Electric field is non zero over (1-1/3) = 2/3 of d
From the relation V = Ed,
The voltage has changed by a factor of 2/3
Since the capacitance is given as C = Q/V
The new capacitance with the conductor in place, C' = (3/2) C
C' = (3/2) * 1μF
C' = 1.5 μF
d) Energy stored in the capacitor with the conductor in place
[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1.5* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{3}\\\\E = 675 *10^{-6}\\\\E = 6.75 *10^{-4} J[/tex]