Respuesta :
Answer:
The tension on the clotheslines is [tex]T = 8.83 \ N[/tex]
Explanation:
The diagram illustrating this question is shown on the first uploaded image
From the question we are told that
The distance between the two poles is [tex]d = 12 \ m[/tex]
The mass tie to the middle of the clotheslines [tex]m = 1 \ kg[/tex]
The length at which the clotheslines sags is [tex]l = 4 \ m[/tex]
Generally the weight due to gravity at the middle of the clotheslines is mathematically represented as
[tex]W = mg[/tex]
let the angle which the tension on the clotheslines makes with the horizontal be [tex]\theta[/tex] which mathematically evaluated using the SOHCAHTOA as follows
[tex]Tan \theta = \frac{ 4}{6}[/tex]
=> [tex]\theta = tan^{-1}[\frac{4}{6} ][/tex]
=> [tex]\theta = 33.70^o[/tex]
So the vertical component of this tension is mathematically represented a
[tex]T_y = 2* Tsin \theta[/tex]
Now at equilibrium the net horizontal force is zero which implies that
[tex]T_y - mg = 0[/tex]
=> [tex]T sin \theta - mg = 0[/tex]
substituting values
[tex]T = \frac{m*g}{sin (\theta )}[/tex]
substituting values
[tex]T = \frac{1 *9.8}{2 * sin (33.70 )}[/tex]
[tex]T = 8.83 \ N[/tex]
