What is the solution of the equation (x - 5)2 +3(x-5)+9 = 0? Use u substitution and the quadratic formula to solve.

Answer:
x= [tex]\frac{7+3i\sqrt{3} }{2}[/tex] and [tex]\frac{7-3i\sqrt{3} }{2}[/tex]
Step-by-step explanation:
(x - 5)^(2) +3(x-5)+9
(x - 5)^(2)= x2−10x+25
3(x-5)= 3x-15
x^2-10x+25+3x-15+9
x^2-7x+19=0
a=1 b=-7 c=19
use quadratic formula
[tex]\frac{-b+\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]\frac{-(-7)+\sqrt{-7^{2}-4(1)(19) } }{2}[/tex]
[tex]\frac{7+\sqrt{49{}-4(19) } }{2}[/tex]
[tex]\frac{7+\sqrt{49{}-76 } }{2}[/tex]
[tex]\frac{7+\sqrt{-27{} } }{2}[/tex]
[tex]\sqrt{-27} =3i\sqrt{3}[/tex]
[tex]\frac{7+3i\sqrt{3} }{2}[/tex]