Answer: [tex]6\dfrac{3}{8}\text{ inches}[/tex]
Step-by-step explanation:
Given: Original length = [tex]15\dfrac{1}{8}[/tex] inches
[tex]=\dfrac{8\times15+1}{8}=\dfrac{121}{8}[/tex] inches ( In improper fraction )
Length of piece cut from original = [tex]8\dfrac{3}{4}[/tex] inches
[tex]=\dfrac{4\times8+3}{4}[/tex][tex]= \dfrac{35}{4}[/tex] inches ( In improper fraction )
Length of piece leftover piece = (Original length ) - (Length of piece cut )
[tex]=\dfrac{121}{8}-\dfrac{35}{4}\\\\=\dfrac{121-2\times35}{8}\\\\=\dfrac{121-70}{8}\\\\=\dfrac{51}{8}\\\\=6\dfrac{3}{8}\text{ inches}[/tex]
Hence, the leftover piece will be [tex]6\dfrac{3}{8}\text{ inches}[/tex] long.