contestada

Obtain the general solution to the equation. StartFraction dy Over dx EndFraction equals StartFraction y Over x EndFraction plus 3 x plus 1 The general solution is ​y(x)equals nothing​, ignoring lost​ solutions, if any.

Respuesta :

Answer: y(x) = C.x.[tex]e^{\frac{3x}{2}+x}[/tex]

Step-by-step explanation: To solve the differential equation:

1) Put similar terms together:

[tex]\frac{dy}{dx} = \frac{y}{x}+3x+1[/tex]

[tex]\frac{dy}{y} = (\frac{1}{x} +3x + 1) dx[/tex]

2) Integrate both sides

[tex]\int\limits {\frac{dy}{y} } = \int\ {\frac{1}{x} + 3x + 1 } \, dx[/tex]

ln y = ln x + [tex]\frac{3}{2}x^{2}[/tex] + x + c

y(x) = [tex]e^{lnx + \frac{3}{2}x^{2}+x}.e^{c}[/tex]

3) Knowing that c is a constant and [tex]e^{lnx} = x[/tex]:

y(x) = C.x.[tex]e^{\frac{3}{2}.x^{2} + x }[/tex]

The general solution to the equation is: y(x) = C.x.[tex]e^{\frac{3}{2}.x^{2} + x }[/tex]