Answer:
d) [25, 1.581]
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation(which is the square root of the variance) [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation, which is also standard error, [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\sigma = \sqrt{200}, n = 80[/tex]
So the standard error is:
[tex]s = \frac{\sqrt{200}}{\sqrt{80}} = 1.581[/tex]
By the Central Limit Theorem, the mean is the same, so 25.
The correct answer is:
d) [25, 1.581]