Respuesta :
Answer:
A) A = {RRR, LLL, SSS}
B) B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}
Step-by-step explanation:
A) All vehicles must go right, left or straight ahead (three possibilities):
A = {RRR, LLL, SSS}
B) One vehicle must go right, one must go left, and the remaining one must go straight ahead (six possibilities):
B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) There are three ways that exactly two vehicles go right (1 and 3, 2 and 3, 1 and 2), there are then two options for the remaining vehicle (left and straight) for a total of six possibilities:
C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) Follow the same reasoning from the previous item, but multiply the number of possibilities by 3 (for each direction in which both cars can go: right, left or straight):
D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' is the set containing all possibilities not present in set D. D' is comprised by the possibilities of all vehicles going in the same direction, or each vehicle in a different direction:
D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) The outcomes in C ∪ D is the union of elements from set C and D (neglecting repeated values), which happens to be all values in set D.
C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) The outcomes in C ∩ D is the list of values present in both sets C and D, which happens to be all values in set C:
C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}