Answer:
c) 0.62
Step-by-step explanation:
In this case, we are required to find the partial correlation, [tex] r_Y_X_1_|_X_2[/tex].
To find the partial correlation, use the formula:
[tex] r_Y_X_1_|_X_2 = \frac{r_Y_X_1 - r_Y_X_2 * r_X_1_X_2}{\sqrt{1 - r_X_1_X_2}^2 - \sqrt{1 - r_Y_X_2}^2} [/tex]
[tex] r_Y_X_1_|_X_2 = \frac{0.64 - 0.72 * 0.32}{\sqrt{1 - 0.32}^2 - \sqrt{1 - 0.72}^2} [/tex]
[tex] = \frac{0.410}{0.657}[/tex]
[tex] r_Y_X_1_|_X_2 = 0.62 [/tex]
The partial correlation is 0.62.
Option C