The potential energy function
U(x,y)=A[(1/x2) + (1/y2)] describes a conservative force, where A>0.
Derive an expression for the force in terms of unit vectors i and j.

Respuesta :

Answer:

[tex]F=-2A[\frac{1}{x^3}\hat{i}+\frac{1}{y^3}\hat{j}][/tex]

Explanation:

You have the following potential energy function:

[tex]U(x,y)=A[\frac{1}{x^2}+\frac{1}{y^2}}][/tex]           (1)

A > 0 constant

In order to find the force in terms of the unit vectors, you use the gradient of the potential function:

[tex]\vec{F}=\bigtriangledown U(x,y)=\frac{\partial}{\partial x}U\hat{i}+\frac{\partial}{\partial y}U\hat{j}[/tex]         (2)

Then, you replace the expression (1) into the expression (2) and calculate the partial derivatives:

[tex]\vec{F}=A\frac{\partial}{\partial x}[\frac{1}{x^2}+\frac{1}{y^2}]} \hat{i}+A\frac{\partial}{\partial x}[\frac{1}{x^2}+\frac{1}{y^2}]\hat{j}\\\\\vec{F}=A(-2x^{-3})\hat{i}+A(-2y^{-3})\hat{j}\\\\F=-2A[\frac{1}{x^3}\hat{i}+\frac{1}{y^3}\hat{j}][/tex](3)

The result obtained in (3) is the force expressed in terms of the unit vectors, for the potential energy function U(x,y).