Two wires A and B with circular cross-section are made of the same metal and have equal lengths, but the resistance of wire A is four times greater than that of wire B. What is the ratio of the radius of A to that of B

Respuesta :

Answer:

r₁/r₂ = 1/2 = 0.5

Explanation:

The resistance of a wire is given by the following formula:

R = ρL/A

where,

R = Resistance of wire

ρ = resistivity of the material of wire

L = Length of wire

A = Cross-sectional area of wire = πr²

r = radius of wire

Therefore,

R = ρL/πr²

FOR WIRE A:

R₁ = ρ₁L₁/πr₁²   -------- equation 1

FOR WIRE B:

R₂ = ρ₂L₂/πr₂²   -------- equation 2

It is given that resistance of wire A is four times greater than the resistance of wire B.

R₁ = 4 R₂

using values from equation 1 and equation 2:

ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²

since, the material and length of both wires are same.

ρ₁ = ρ₂ = ρ

L₁ = L₂ = L

Therefore,

ρL/πr₁² = 4ρL/πr₂²

1/r₁² = 4/r₂²

r₁²/r₂² = 1/4

taking square root on both sides:

r₁/r₂ = 1/2 = 0.5