Respuesta :

Answer:

[tex]\sum^\infty_{n=0} -5 (\frac{x+2}{2})^n[/tex]

Step-by-step explanation:

Rn(x) →0

f(x) = 10/x

a = -2

Taylor series for the function f at the number a is:

[tex]f(x) = \sum^\infty_{n=0} \frac{f^{(n)}(a)}{n!} (x - a)^n[/tex]

[tex]f(x) = f(a) + \frac{f'(a)}{1!}(x-a)+\frac{f"(a)}{2!} (x-a)^2 + ...[/tex] ............ equation (1)

Now we will find the function f and all derivatives of the function f at a = -2

f(x) = 10/x            f(-2) = 10/-2

f'(x) = -10/x²         f'(-2) = -10/(-2)²

f"(x) = -10.2/x³      f"(-2) = -10.2/(-2)³

f"'(x) = -10.2.3/x⁴     f'"(-2) = -10.2.3/(-2)⁴

f""(x) = -10.2.3.4/x⁵    f""(-2) = -10.2.3.4/(-2)⁵

∴ The Taylor series for the function f at a = -4 means that we substitute the value of each function into equation (1)

So, we get [tex]\sum^\infty_{n=0} - \frac{10(x+2)^n}{2^{n+1}}[/tex] Or [tex]\sum^\infty_{n=0} -5 (\frac{x+2}{2})^n[/tex]

Taylor series  is a power series that gives the expansion of a function f (x) in the neighborhood of a point.

Taylor series is,   [tex]f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^{2}+........[/tex]

[tex]f(x)=\sum_{n=0}^{\infty }-\frac{10(x+2)^{n}}{2^{n+1}}[/tex]

Here,  f(x) = 1/x  and a = -2

Now find derivative,

 f(x) = 10/x            f(-2) = 10/-2

f'(x) = -10/x²         f'(-2) = -10/(-2)²

f"(x) = 10.2/x³      f"(-2) = 10.2/(-2)³

f"'(x) = -10.2.3/x⁴     f'"(-2) = -10.2.3/(-2)⁴

Substituting above values in Taylor series expansion.

We get,   [tex]f(x)=\sum_{n=0}^{\infty }-\frac{10(x+2)^{n}}{2^{n+1}}[/tex]

Learn more:

https://brainly.com/question/24237739