Student Produced Response - Calculator
11
ax+by=10
3x + 4y = 20
In the system of equations above, a and b are
constants. If the system has infinitely many
solutions, what is the value of a/b?​

Respuesta :

Answer:

[tex]\dfrac{a}{b}=0.75[/tex].

Step-by-step explanation:

If two equations [tex]a_1x+b_1y+c_1=0[/tex] and [tex]a_2x+b_2y+c_2=0[/tex] has infinitely many solutions, then

[tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}[/tex]

The given equations are

[tex]ax+by=10[/tex]

[tex]3x+4y=20[/tex]

It is given that the above system of equations has infinitely many solutions. So,

[tex]\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{10}{20}[/tex]

[tex]\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{1}{2}[/tex]

Now,

[tex]\dfrac{a}{3}=\dfrac{1}{2}[/tex] and [tex]\dfrac{b}{4}=\dfrac{1}{2}[/tex]

[tex]a=\dfrac{3}{2}[/tex] and [tex]b=\dfrac{4}{2}[/tex]

[tex]a=1.5[/tex] and [tex]b=2[/tex]

So, a=1.5 and b=2.

Now,

[tex]\dfrac{a}{b}=\dfrac{1.5}{2}=0.75[/tex]

Therefore, [tex]\dfrac{a}{b}=0.75[/tex].

Otras preguntas