Which expression is equivalent to (x Superscript one-half Baseline y Superscript negative one-fourth Baseline z) Superscript negative 2? StartFraction x Superscript one-half baseline Over y z squared EndFraction StartFraction x Superscript one-half baseline Over y Superscript one-fourth Baseline z squared EndFraction StartFraction y Superscript one-half Baseline Over x z squared EndFraction

Respuesta :

Answer:

[tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]

Step-by-step explanation:

Given

[tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex]

Required

Find the equivalent

To find the equivalent of the given expression; we have to apply laws of indices;

As a law;

[tex]a^{-m} = \frac{1}{a^m}[/tex]

So; the expression [tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex] becomes

[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}}}*\frac{1}{z^2}[/tex]

This is further simplified to

[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}} * z^2}[/tex]

[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}}z^2}[/tex]

Combine to form a single fraction

[tex]\frac{x^{\frac{1}{2}}*1}{y^{\frac{1}{4}}z^2}[/tex]

Multiply numerator

[tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]

The expression can not be further simplified

Hence [tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex] is equivalent to [tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]

Answer:

c

Step-by-step explanation:

x has a exponent of -1 after multiplying 1/2 and -2, so x has to be in the denominator of the answer no matter what.

Hope this helped other than the guy above lol