Respuesta :
Answer:
[tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]
Step-by-step explanation:
Given
[tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex]
Required
Find the equivalent
To find the equivalent of the given expression; we have to apply laws of indices;
As a law;
[tex]a^{-m} = \frac{1}{a^m}[/tex]
So; the expression [tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex] becomes
[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}}}*\frac{1}{z^2}[/tex]
This is further simplified to
[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}} * z^2}[/tex]
[tex]x^{\frac{1}{2}}*\frac{1}{y^{\frac{1}{4}}z^2}[/tex]
Combine to form a single fraction
[tex]\frac{x^{\frac{1}{2}}*1}{y^{\frac{1}{4}}z^2}[/tex]
Multiply numerator
[tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]
The expression can not be further simplified
Hence [tex]x^{\frac{1}{2}}y^{-\frac{1}{4}}z^{-2}[/tex] is equivalent to [tex]\frac{x^{\frac{1}{2}}}{y^{\frac{1}{4}}z^2}[/tex]
Answer:
c
Step-by-step explanation:
x has a exponent of -1 after multiplying 1/2 and -2, so x has to be in the denominator of the answer no matter what.
Hope this helped other than the guy above lol