Respuesta :

Answer:

Therefore, the coordinates of point Q is (2,3)

Step-by-step explanation:

Let the coordinates of Q be(a,b)

Let R be the midpoint of PQ

Coordinates of R [tex]=(\frac{4+a}{2}, \frac{3+b}{2})[/tex]

R lies on the line x + y - 6= 0, therefore:

[tex]\implies \dfrac{4+a}{2}+ \dfrac{3+b}{2}-6=0\\\implies 4+a+3+b-12=0\\\implies a+b-5=0\\\implies a+b=5[/tex]

Slope of AR X Slope of PQ = -1

[tex]-1 \times \dfrac{b-3}{a-4}=-1\\b-3=a-4\\a-b=-3+4\\a-b=-1[/tex]

Solving simultaneously

a+b=5

a-b=-1

2a=4

a=2

b=3

Therefore, the coordinates of point Q is (2,3)