Respuesta :

Answer:

Option B.

Step-by-step explanation:

Scale factor of the image = [tex]\frac{\text{One side of the triangle FED}}{\text{Corresponding side of the triangleABC}}[/tex]

                                          = [tex]\frac{\text{DF}}{\text{AC}}[/tex]

                                          = [tex]\frac{3}{6}[/tex]

                                          = [tex]\frac{1}{2}[/tex]

Coordinates of point C → (-2, 2)

Coordinates of the corresponding point C' after dilation with a scale factor [tex]\frac{1}{2}[/tex],

C(-2, 2) → C'(-1, 1)

Coordinates of point C' after reflection across y-axis,

C'(-1, 1) → C"(1, 1)

Followed by the translation of 2 units downwards,

C"(1, 1) → D[1, (1 - 2)]

          → D(1, -1)

From the graph we get the same coordinates of point D as (1, -1).

Therefore, ΔABC was dilated by a scale factor of [tex]\frac{1}{2}[/tex], reflected across the y-axis and moved through the translation of 2 units downwards.