Respuesta :

leena

Hey there! :)

Answer:

x = -1.

Step-by-step explanation:

[tex]\frac{1}{x-4}+ \frac{x}{x-2}= \frac{2}{x^{2}-6x+8 }[/tex]

Make each fraction have a common denominator:

[tex]\frac{1(x-2)}{x^{2}-6x+8}+ \frac{x(x-4)}{x^{2}-6x+8}= \frac{2}{x^{2}-6x+8 }[/tex]

Simplify:

[tex]\frac{x-2}{x^{2}-6x+8}+ \frac{x^{2}-4x }{x^{2}-6x+8}= \frac{2}{x^{2}-6x+8 }[/tex]

Disregard the denominator and solve the numerators:

x - 2 + x² - 4x = 2

Combine like terms:

x² - 3x - 2 = 2

x² - 3x - 4 = 0

Factor:

(x - 4)(x + 1)

***Only one of these solutions works because if x = 4, the denominator of the first fraction would be 0, which is undefined. Therefore, the only possible solution is x = -1.