Respuesta :

Answer:

[tex]m\angle 2=53^{\circ}[/tex]

[tex]m\angle 7=74^{\circ}[/tex]

Step-by-step explanation:

It is given that quadrilateral GHJK is a rectangle and [tex]n\angle 3=37^{\circ}[/tex].

All interior angles of a rectangle are right angles. Diagonals are equal and bisect each other.

Now,

[tex]m\angle HKJ+m\angle HKG=90^{\circ}[/tex]    (Interior angles of a rectangle are right angles)

[tex]m\angle 3+m\angle HKG=90^{\circ}[/tex]

[tex]37^{\circ}+m\angle HKG=90^{\circ}[/tex]

[tex]m\angle HKG=90^{\circ}-37^{\circ}[/tex]

[tex]m\angle HKG=53^{\circ}[/tex]

In an isosceles triangle, angle with equal sides are equal.

[tex]m\angle JGK=m\angle HKG[/tex]

[tex]m\angle 2=53^{\circ}[/tex]

Therefore, measure of angle 2 is 53 degrees.

Let the diagonals intersect each other at point O.

In triangle OGK,

[tex]m\angle OGK+m\angle OKG+m\angle GOK=180^{\circ}[/tex]    (Angle su property)

[tex]53^{\circ}+53^{\circ}+m\angle GOK=180^{\circ}[/tex]

[tex]106^{\circ}+m\angle GOK=180^{\circ}[/tex]

[tex]m\angle GOK=180^{\circ}-106^{\circ}=74^{\circ}[/tex]

Vertical opposite angles are equal. So,

[tex]m\angle 7=74^{\circ}[/tex]

Therefore, measure of angle 7 is 74 degrees.