1096175
contestada

Find the smallest value of $x$ such that $x^2 + 10x + 25 = 8$. [tex]Find the smallest value of $x$ such that $x^2 + 10x + 25 = 8$.[/tex]

Respuesta :

Answer:

[tex]x =-5\ - \sqrt{8}[/tex]

Step-by-step explanation:

Given

[tex]x^2 + 10x + 25 = 8[/tex]

Required

Find the smallest value of x

[tex]x^2 + 10x + 25 = 8[/tex]

Expand the expression on the right hand side

[tex]x^2 + 5x + 5x + 25 = 8[/tex]

Factorize

[tex]x(x+5)+5(x+5) = 8[/tex]

[tex](x+5)(x+5) = 8[/tex]

[tex](x+5)^2 = 8[/tex]

Take Square root of both sides

[tex]\sqrt{(x+5)^2} = \±\sqrt{8}[/tex]

[tex](x+5) = \±\sqrt{8}[/tex]

Remove bracket

[tex]x+5 = \±\sqrt{8}[/tex]

Subtract 5 from both sides

[tex]x+5-5 =-5\± \sqrt{8}[/tex]

[tex]x =-5\± \sqrt{8}[/tex]

[tex]x =-5\ + \sqrt{8}[/tex] or [tex]x =-5\ - \sqrt{8}[/tex]

Comparing both values of x;

The smallest value of x is

[tex]x =-5\ - \sqrt{8}[/tex]