Respuesta :
Answer:
[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.
Step-by-step explanation:
[tex]p(x) = 6-x[/tex] and
[tex]q(x) = 6x[/tex]
First of all, let us have a look at the definition of domain and range.
Domain of a function [tex]y =f(x)[/tex] is the set of input value i.e. the value of [tex]x[/tex] for which the function [tex]f(x)[/tex] is defined.
Range of a function [tex]y =f(x)[/tex] is the set of output value i.e. the value of [tex]y[/tex] or [tex]f(x)[/tex] for the values of [tex]x[/tex] in the domain.
Now, let us consider the given functions one by one:
[tex]p(x) = 6-x[/tex]
Let us sketch the graph of given function.
Please find attached graph.
There are no values of [tex]x[/tex] for which p(x) is not defined so domain is All real numbers.
So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Its range is also All Real Numbers
So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
[tex]q(x) = 6x[/tex]
Let us sketch the graph of given function.
Please find attached graph.
There are no values of [tex]x[/tex] for which [tex]q(x)[/tex] is not defined so domain is All real numbers.
So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Its range is also All Real Numbers
So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Hence, the correct answer is:
[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.
