Air at 27oC and 1 atm flows over a flat plate 40 cm in length and 1 cm in width at a speed of 2 m/s. The plate is heated over its entire length to a temperature of 600C. Calculate the heat transferred from the plate.

Respuesta :

Answer:

Heat transferred = 22.9 watt

Explanation:

Given that:

[tex]T_1[/tex] = 27°C = (273 + 27) K = 300 K

[tex]T_2[/tex]= 600°C = (600 +273) K = 873 K

speed v = 2 m/s

length x = 40 cm = 0.4 cm

width = 1 cm = 0.001 m

The heat transferred from the plate can be calculate by using the formula:

Heat transferred = h×A ×ΔT

From the tables of properties of air, the following values where obtained.

[tex]k = 0.02476 \ W/m.k \\ \\ \rho = 1.225 \ kg/m^3 \\ \\ \mu = 18.6 \times 10^{-6} \ Pa.s \\ \\ c_p = 1.005 \ kJ/kg[/tex]

To start with the reynolds number; the formula for calculating the reynolds number can be expressed as:

reynolds number = [tex]\dfrac{\rho \times v \times x }{\mu}[/tex]

reynolds number = [tex]\dfrac{1.225 \times 2 \times 0.4}{18.6 \times 10^{-6}}[/tex]

reynolds number = [tex]\dfrac{0.98}{18.6 \times 10^{-6}}[/tex]

reynolds number = 52688.11204

Prandtl number = [tex]\dfrac{c_p \mu}{k}[/tex]

Prandtl number = [tex]\dfrac{1.005 \times 18.6 \times 10^{-6} \times 10^3}{0.02476}[/tex]

Prandtl number = [tex]\dfrac{0.018693}{0.02476}[/tex]

Prandtl number = 0.754963

The nusselt number for this turbulent flow over the flat plate  can be computed as follows:

Nusselt no = [tex]\dfrac{hx}{k} = 0.0296 (Re) ^{0.8} \times (Pr)^{1/3}[/tex]

[tex]\dfrac{h \times 0.4}{0.02476} = 0.0296 (52688.11204) ^{0.8} \times (0.754968)^{1/3}[/tex]

[tex]\dfrac{h \times 0.4}{0.02476} =161.4252008}[/tex]

[tex]h =\dfrac{161.4252008 \times 0.02476}{ 0.4}[/tex]

h = 9.992 W/m.k

Recall that:

The heat transferred from the plate can be calculate by using the formula:

Heat transferred = h×A ×ΔT

Heat transferred = [tex]h\times A \times (T_2-T_1)[/tex]

Heat transferred = 9.992 × (0.4 × 0.01) ×(873-300)

Heat transferred = 22.9 watt