Respuesta :
Answer:
Heat transferred = 22.9 watt
Explanation:
Given that:
[tex]T_1[/tex] = 27°C = (273 + 27) K = 300 K
[tex]T_2[/tex]= 600°C = (600 +273) K = 873 K
speed v = 2 m/s
length x = 40 cm = 0.4 cm
width = 1 cm = 0.001 m
The heat transferred from the plate can be calculate by using the formula:
Heat transferred = h×A ×ΔT
From the tables of properties of air, the following values where obtained.
[tex]k = 0.02476 \ W/m.k \\ \\ \rho = 1.225 \ kg/m^3 \\ \\ \mu = 18.6 \times 10^{-6} \ Pa.s \\ \\ c_p = 1.005 \ kJ/kg[/tex]
To start with the reynolds number; the formula for calculating the reynolds number can be expressed as:
reynolds number = [tex]\dfrac{\rho \times v \times x }{\mu}[/tex]
reynolds number = [tex]\dfrac{1.225 \times 2 \times 0.4}{18.6 \times 10^{-6}}[/tex]
reynolds number = [tex]\dfrac{0.98}{18.6 \times 10^{-6}}[/tex]
reynolds number = 52688.11204
Prandtl number = [tex]\dfrac{c_p \mu}{k}[/tex]
Prandtl number = [tex]\dfrac{1.005 \times 18.6 \times 10^{-6} \times 10^3}{0.02476}[/tex]
Prandtl number = [tex]\dfrac{0.018693}{0.02476}[/tex]
Prandtl number = 0.754963
The nusselt number for this turbulent flow over the flat plate can be computed as follows:
Nusselt no = [tex]\dfrac{hx}{k} = 0.0296 (Re) ^{0.8} \times (Pr)^{1/3}[/tex]
[tex]\dfrac{h \times 0.4}{0.02476} = 0.0296 (52688.11204) ^{0.8} \times (0.754968)^{1/3}[/tex]
[tex]\dfrac{h \times 0.4}{0.02476} =161.4252008}[/tex]
[tex]h =\dfrac{161.4252008 \times 0.02476}{ 0.4}[/tex]
h = 9.992 W/m.k
Recall that:
The heat transferred from the plate can be calculate by using the formula:
Heat transferred = h×A ×ΔT
Heat transferred = [tex]h\times A \times (T_2-T_1)[/tex]
Heat transferred = 9.992 × (0.4 × 0.01) ×(873-300)
Heat transferred = 22.9 watt