Respuesta :
Answer:
±0.06
Step-by-step explanation:
To find the margin of error using the standard deviation method, use the equation [tex]2(\frac{maximum-minimum}{6})[/tex].
In this situation, it would look like this: [tex]2(\frac{0.50-0.32}{6})[/tex]. Using this equation, you can find the margin of error by using the standard deviation method.
[tex]2(\frac{0.50-0.32}{6})[/tex]
[tex]2(\frac{0.18}{6})[/tex]
[tex]2(0.03)[/tex]
[tex]0.06[/tex]
Hope this helps!
(I know this is right because its what I answered on the test, and got 100%)
The margin of error of the population proportion using an estimate of the standard deviation is 0.06
we have given that,
A sample proportion of 0.44 is found.
The minimum sample proportion from the simulation is 0.32
The maximum sample proportion from the simulation is 0.50
What is the formula for the margin of error using the standard deviation method?
The formula for the margin of error using standard deviation is,
[tex]2(\frac{max-min}{6} )[/tex]
Use the given value in the formula we get,
[tex]2(\frac{0.50-0.32}{6} )[/tex]
Using this equation, you can find the margin of error by using the standard deviation method.
[tex]2(\frac{0.50-0.32}{6} )\\\\=2(\frac{0.18}{6})\\\\ =2(0.03)\\\\=0.06[/tex]
Therefore we get,
The margin of error of the population proportion using an estimate of the standard deviation is 0.06
To learn more about the population proportion using an estimate of the standard deviation visit:
https://brainly.com/question/22985943