Respuesta :

Answer:

Hey there!

12 people can paint the orchard in one hour. Then, in one hour, one person can paint 1/12 of the orchard.

It would take five people 2.4 hours to paint the orchard, as 12/5=2.4.

Hope this helps :)

Answer:

[tex] \boxed{144 \: \: \: minutes}[/tex]

Step-by-step explanation:

Let's solve :

[tex] \mathsf{ \: people \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:time \: ( \: in \: minutes)}[/tex]

[tex] \mathsf{12 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 \: hour \: = \: 60 \: minutes }[/tex]

[tex] \mathsf{5 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: t }[/tex]

The amount of time needed for completion is inversely proportional to the number of people working on the orchard. Let t be the amount of time ( in minutes ) needed when there are 5 people working.

[tex] \mathsf{ \frac{12}{5} = \frac{t}{60} }[/tex]

Apply cross product property

[tex] \mathsf{5t = 12 \times 60}[/tex]

Multiply the numbers

[tex] \mathsf{5t = 720}[/tex]

Divide both sides of the equation by 5

[tex] \mathsf{ \frac{5t}{5} = \frac{720}{5} }[/tex]

Calculate

[tex] \mathsf{t = 144 \: minutes}[/tex]

Hope I helped!

Best regards!!