Respuesta :
Answer:
Hey there!
12 people can paint the orchard in one hour. Then, in one hour, one person can paint 1/12 of the orchard.
It would take five people 2.4 hours to paint the orchard, as 12/5=2.4.
Hope this helps :)
Answer:
[tex] \boxed{144 \: \: \: minutes}[/tex]
Step-by-step explanation:
Let's solve :
[tex] \mathsf{ \: people \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:time \: ( \: in \: minutes)}[/tex]
[tex] \mathsf{12 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 \: hour \: = \: 60 \: minutes }[/tex]
[tex] \mathsf{5 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: t }[/tex]
The amount of time needed for completion is inversely proportional to the number of people working on the orchard. Let t be the amount of time ( in minutes ) needed when there are 5 people working.
[tex] \mathsf{ \frac{12}{5} = \frac{t}{60} }[/tex]
Apply cross product property
[tex] \mathsf{5t = 12 \times 60}[/tex]
Multiply the numbers
[tex] \mathsf{5t = 720}[/tex]
Divide both sides of the equation by 5
[tex] \mathsf{ \frac{5t}{5} = \frac{720}{5} }[/tex]
Calculate
[tex] \mathsf{t = 144 \: minutes}[/tex]
Hope I helped!
Best regards!!