Respuesta :

Step-by-step explanation:

[tex] \frac{5 - 5 \sqrt{3} }{2 - \sqrt{11} } [/tex]

To rationalize the surd multiply both the numerator and the denominator by

2 + √11

That's

[tex] \frac{5 - 5 \sqrt{3} }{2 - \sqrt{11} } \times \frac{2 + \sqrt{11} }{2 + \sqrt{11} } [/tex]

Multiply the numerators and the denominator separately

That's

[tex] \frac{(5 - 5 \sqrt{3} )(2 + \sqrt{11} )}{(2 - \sqrt{11})(2 + \sqrt{11} ) } [/tex]

Simplify

[tex] \frac{10 + 5 \sqrt{11} - 10 \sqrt{3} - 5\sqrt{33} }{?} [/tex]

[tex] \frac{10 + 5 \sqrt{11} - 10 \sqrt{3} - 5 \sqrt{33} }{4 - 2 \sqrt{11} + 2 \sqrt{11} - 11} [/tex]

[tex] \frac{10 + 5 \sqrt{11} - 10 \sqrt{3} - 5 \sqrt{33}}{4 - 11} [/tex]

[tex] \frac{10 + 5 \sqrt{11} - 10 \sqrt{3} - 5 \sqrt{33}}{ - 7} [/tex]

We have the final answer as

[tex] - \frac{10 + 5 \sqrt{11} - 10 \sqrt{3} - 5 \sqrt{33}}{7} [/tex]

Hope this helps you